From generalized Tamari intervals to non-separable planar maps (extended abstract)
نویسندگان
چکیده
Let v be a grid path made of north and east steps. The lattice TAM(v), based on all grid paths weakly above the grid path v sharing the same endpoints as v, was introduced by Préville-Ratelle and Viennot (2014) and corresponds to the usual Tamari lattice in the case v = (NE). They showed that TAM(v) is isomorphic to the dual of TAM(←−v ), where←−v is the reverse of v with N and E exchanged. Our main contribution is a bijection from intervals in TAM(v) to non-separable planar maps. It follows that the number of intervals in TAM(v) over all v of length n is 2(3n+3)! (n+2)!(2n+3)! . This formula was first obtained by Tutte(1963) for non-separable planar maps. Résumé. Soit v un chemin constitué de pas Nord et Est. Le treillis TAM(v), basé sur tous les chemins faiblement au dessus de v avec les mêmes extrémités que v, a été introduit par Préville-Ratelle et Viennot (2014) et correspond au treillis de Tamari classique dans le cas v = (NE). Ils ont démontré que TAM(v) est isomorphe au treillis dual de TAM(←−v ), où ←−v est v renversé avec N et E échangés. Notre contribution principale est une bijection entre les intervalles de TAM(v) et les cartes planaires non-séparables. Il s’ensuit que le nombre d’intervalles dans TAM(v) sur tous les chemins v de longueur n est donné par 2(3n+3)! (n+2)!(2n+3)! . Cette formule a été obtenue par Tutte(1963) pour les cartes planaires non-séparables.
منابع مشابه
Restricted rooted non-separable planar maps
Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps have connections, for example, to pattern-avoiding permutations, and they are in one-to-one correspondence with the β(1, 0)-trees introduced by Cori, Jacquard and Schaeffer in 1997. In this paper we enumerate 2-face-free rooted non-separable planar maps and obtain restrict...
متن کاملA sequent calculus for the Tamari order
We introduce a sequent calculus with a simple restriction of Lambek’s product rules that precisely captures the classical Tamari order, i.e., the partial order on fully-bracketed words (equivalently, binary trees) induced by a semi-associative law (equivalently, tree rotation). We establish a focusing property for this sequent calculus (a strengthening of cut-elimination), which yields the foll...
متن کاملLeft ternary trees and non-separable rooted planar maps
In this paper, we illustrate a bijective proof of the enumerative formula regarding non-separable rooted planar maps N S, by means of a class L of certain ternary trees (called left trees). Our rst step consists in determining the left trees' combinatorial enumeration according to the number of their internal nodes. We then establish a bijection between the left trees having n internal nodes an...
متن کاملNew bijective links on planar maps via orientations
This article presents new bijections on planar maps. At first a bijection is established between bipolar orientations on planar maps and specific “transversal structures” on triangulations of the 4-gon with no separating 3-cycle, which are called irreducible triangulations. This bijection specializes to a bijection between rooted non-separable maps and rooted irreducible triangulations. This yi...
متن کاملOn generalized fuzzy numbers
This paper first improves Chen and Hsieh’s definition of generalized fuzzy numbers, which makes it the generalization of definition of fuzzy numbers. Secondly, in terms of the generalized fuzzy numbers set, we introduce two different kinds of orders and arithmetic operations and metrics based on the λ-cutting sets or generalized λ-cutting sets, so that the generalized fuzzy numbers are integrat...
متن کامل